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Received 20 June 1980, in final form 6 October 1980 

Abstract. It is shown that numerical differentiation can be remsved from the conventional 
solution of Abel’s integral equation. Using the Gaussian quasipotential as an example, we 
show that the new inversion method is less sensitive to random errors in the input data. 

1. Introduction 

Abel’s integral equation is the standard tool for the inversion of experimental data in 
different areas of physics. In atomic and molecular scattering (Buck 1974, Klingbell 
1972), the direct problem is to find the phase-shift from a given potential using 

where k2=2pE/h2  and rt is the classical turning point. Using the Sabatier (1965) 
transformation 

s2 = r2(1 - V ( r ) / E )  (2) 

and b = ( I  + $ ) / k ,  one obtains Abel’s integral equation 

where Q(s) = ( h ’ k 2 / p )  ln(r(s)/s). Given a set of phase-shifts, the inverse problem is to 
solve for the quasipotential (Vollmer 1969) Q(s) from which the potential V ( r )  can be 
determined. The solution of equation (3) is commonly written as 

d ”  
ds Is Q(s) = - (~/Ts)--  A(b)b db/(b2-s2)1/2 

or 

(4) 

where A(b) = -(h*k/p)T(b). 
In plasma spectroscopy (Fleurier and Chapelle 1974), Abel’s integral equation is 

used to study the extended source of radiation with cylindrical symmetry. If Y ( y )  is the 
transverse distribution of the intensity emitted perpendicularly to the axis of the source 
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and F ( r )  is the emission coefficient, then the direct problem is given by 

rF(r) dr/(r’-- y2)’/ ’  
R 

Y ( y )  = 2 
Y 

where Y ( R )  = 0 is the boundary condition. The inverse problem is solved by 

As shown by Di Salvo and Viano (1976), the problem of solving Abel’s integral 
equation is improperly posed because small perturbations of the input data dA(b)/db in 
equation ( 5 )  or d Y(y)/dy in equation (7) can produce large oscillations in the solution. 
In practice, the noises in the original data A(b)  or Y ( y )  are first amplified by the 
numerical differentiation routine. As a result, the numerical derivatives may be too 
contaminated for the construction of the potential or the emission coefficient. The 
purpose of this paper is to remove numerical differentiation from the conventional 
solution of Abel’s integral equation. As a result, we obtain the solution in another form 
which is numerically more stable. 

2. Solution of Abel’s integral equation without numerical differentiation 

Let us start from equation (4) with the substitutions s z = q  and b 2 = p ;  then we have 
U ( q )  = Q(s) ,  A ( b )  = S ( p )  and therefore 

To remove the apparent singularity at p = q, we let U’ = p - q ; then 

d 
U ( q )  = (-4/77) -((6(q + U’)) du. 

0 84 

Integrating by parts, we obtain 
a3 

U(q) = (-2/77) lim E + O  ( - 8 ( q ) / ~  +[ S ( q  + U’) du/u2) .  
E 

If 8 ( q ) / ~  is rewritten as an integral, we have the final result 

The only flaw in equation (12) is the removable singularity at u = 0. Nevertheless, we 
can handle this integrable singularity by extrapolation (Davis and Rabinowitz 1967). 
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3. An example: construction of the Gaussian quasipotential 

As a simple example, we consider the Gaussian quasipotential Q ( s )  = exp(-s2) and the 
corresponding A(b) is given by ST exp(-b2). Using 6 ( p )  = &112 exp(-p) in equation 
(12) and the formula 

1 112 

we can recover the quasipotential U(q)  = exp(--q) analytically. 

expi-q) from 26 data points 
To study the numerical stability of equations (9) and (12), we calculated U(q)  = 

6 ( p , )  = $T1” exp(-pi) (14) 

where p i  = 0.2(i - 1) and i runs from 1 to 26. These input data were first contaminated 
by random errors of the orders lo-* and respectively. Then they were differen- 
tiated and integrated accordingly using natural cubic splines assuming unknown end 
conditions. Numerical results in tables 1 and 2 show that equation (12) is more reliable. 

Table 1. Construction of the quasipotential U ( q )  from input data with errors of the order 

U ( q )  from U ( q )  from 
4 Exact U(q)  equation (9) equation (12) 

0.0 1.000 0 
0.6 0.548 8 
1.0 0.367 9 
1.6 0.201 9 
2.0 0.135 3 
3.0 0.049 8 
4.0 0.018 3 
5.0 0,006 74 

0.702 5 
0.615 8 
0.417 1 
0.190 7 
0.068 4 
0.035 6 
0.019 8 
0,006 67 

1 4 3 4  4 
0.567 7 
0.380 5 
0.208 8 
0.139 9 
0.051 5 
0.018 9 
0.006 97 

Table 2. Construction of the quasipotential U ( q )  from input data with errors of the order 

~~~~ ~ 

U ( q )  from 
9 Exact U(qj equation (9) 

0.0 1.000 0 
0.6 0.548 8 
1 .o 0.367 9 
1.6 0.201 9 
2.0 0.135 3 
3.0 0.049 8 
4.0 0,018 32 
5.0 0.006 74 

0,917 9 
0.556 3 
0.372 7 
0.200 7 
0.128 5 
0.048 3 
0.018 46 
0.007 08 

U ( q )  from 
equation (12) 

1.003 3 
0,550 6 
0.369 1 
0,202 5 
0.135 8 
0.049 9 
0.018 37 
0.006 76 

-- 

In conclusion, in the absence of numerical differentiation, the solution of Abel’s 
integral equation is less susceptible to errors in the input data. 
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